

Tuning Procedure

For the Sigma II Servo System

PRELIMINARY SETUP

- 1. Set **Pn103** = Inertia RatioX100
- 2. Turn OFF online Auto-tuning (Pn110.0=2)
- 3. Turn OFF automatic mode switch (Pn10B.0=4)
- 4. Cycle control power

FINDING THE INERTIA RATIO

METHOD 1: Use ratio calculated from sizing. METHOD 2: Use the Excel spreadsheet, *Inertia by Graphical Analysis*.

METHOD 3: Use the amplifier's Online Auto-Tuning algorithm.

- 1. Turn auto-tuning 'Always On' (Pn110.0=1, cycle power)
- 2. Select an appropriate rigidity (Fn001)
- Run machine under normal pattern and load
 Monitor the identified inertia as it settles
- into a range of values
- 5. Put this value into Pn103.

TUNING

Note: Instability and vibration may not become apparent until the motor starts to move. Tune the machine while the servomotor is running.

I. The Torque Loop

Goals of tuning the torque loop

- Set Pn401 as low as possible so that speed loop gains can later be raised.
- Use the notch filter(s) to eliminate problem frequencies and further decrease Pn401.
- For machine tool applications where the surface finish is important, Torque Reference peak-to-peak ripple should be less than 5%. If it is expected that the speed loop gain will also be raised, shoot for torque ripple even lower.
- 1. Decrease the torque reference filter time constant (Pn401) until servomotor vibrates.
 - If it is already vibrating, decrease Pn100 until vibration is minimal.
- 2. Graph the Torque Reference during vibration using the lowest sample time and measure the frequency.
 - For a frequency <500Hz
 - Activate Notch Filter (Pn408.0=1) at the resonant frequency (Pn409)
 - If the resonance does not change, try moving Pn409 up or down.
 - Decrease Pn401 further until the servomotor vibrates again.
- 3. Increase Pn401 until the servomotor stops vibrating. Torque signal noise should be less than 5% (peak-peak).
 - This sets the frequency response of the torque loop, resulting in a cutoff

frequency of $f_c \cong \frac{15,900}{Pn401}(Hz)$.

II. The Speed Loop

Goals of tuning the speed loop may include the following:

- Make SPEED REFERENCE and FEEDBACK SPEED match as closely as possible
- Maintain proper bandwidth separation between speed and torque loop
- For machine tool applications where the surface finish is important, Torque Reference peak-to-peak ripple should be less than 5%.
- 1. Set $Kv = \frac{f_C}{4}(Hz)$ as a starting value
 - Assume $K_V = Pn100$ when Pn103 is set to the machine's inertia ratio.

• If this is not possible, use
$$K_V = \frac{(\frac{Pn103}{100} + 1) \times J_M}{J_L + J_M} \times Pn100$$

- Adjust Pn100 up or down while monitoring the graphed response.
- A higher value of Pn100 will bring feedback speed closer to speed reference during acceleration
- K_V must NEVER get too close to the torque loop bandwidth (fc), or the system will become unstable.

2. Set $Pn101 \cong \frac{36,600}{K_V}$ (*units* : 0.01*ms*) for the critically damped response.

- A higher value of Pn101 reduces the integral gain, giving an over-damped response. A lower value of Pn101 increases the integral gain, giving to an under-damped response.
- The high frequency sensitivity of the speed loop is increased as the time constant is decreased.
- 3. Other speed loop tuning parameters:
 - Pn10B.0, Pn10C-F (Mode Switch) deactivates Pn101 during acceleration
 - Pn10B.1 (IP control) –Allows higher gains without overshoot
 - Pn110.1, Pn111 (Speed Feedback Compensation)
 - Pn305, 306 (Soft start acceleration and deceleration)
 - Pn307 (Speed reference filter)
 - Pn308 (Speed feedback filter)

III. The Position Loop

The Position loop is tuned when the trace of

- Position Settling Time is as low as possible
- REFERENCE PULSE SPEED and SPEED REFERENCE are as close as possible.
- POSITION ERROR is as low as possible
- TORQUE REFERENCE peak-to-peak ripple is less than 5%.
- 1. Set Pn102 = Pn100
 - The position loop frequency response is $f_P = \frac{Pn102}{2\pi}$
 - f_P must NEVER be set higher than the speed loop frequency response, K_V , or the servo system will become unstable due to improper bandwidth relationships.
- 2. Add Feed-forward gain (Pn109, Pn10A) to dramatically reduce position error and position settling time.
- 3. Other Position Loop tuning parameters
 - Pn207.1, Pn300 (speed feed forward through the V-REF input)
 - Pn207.0, Pn204, Pn208 (accel or average movement filter)
 - Pn107, 108 (Position bias gain)